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Note on the Riccati Method for Differential 
Eigenvalue Problems of Odd Order 

D. M. SLOAN AND J. S. BRAMLEY 

Department of Mathematics, University of Strathclyde, Glasgow, Scotland 

A technique is described for traversing singular points during the numerical evaluation 
of eigenvalues of a system of linear ordinary differential equations using the Riccati method. 
The technique may be applied to a system of even or odd order and with any distribution 
of linear homogeneous boundary conditions. Comparison is made with a method which 
uses a complex contour of integration to avoid the singularities. 

1. INTRODUCTION 

This note is concerned with the Riccati transformation method for the computation 
of eigenvalues of a system of linear ordinary differential equations of the form 

4 - = L(z, a) y 
dz 

subject to the linear separated boundary conditions 

BY(O) = 0, (24 

Cy(x) = 0. (2b) 

Here y is a real n-vector and L is an n x n matrix which depends on the independent 
variable z and on some scalar eigenparameter o. The real matrices B and C have 
full rank and their dimensions are k x 12 and 1 x n, respectively, where k + I = n 
and k 3 1. If (1) is solved by a traditional shooting method which operates by 
generating a basis of the solution space, then difficulties are encountered if the real 
parts of the eigenvalues of L are widely separated. Steps have to be taken to over- 
come the effects of growth in the basis components. The Riccati method overcomes 
some of these growth problems. Scott [I, 21 first described the use of the Riccati 
method for the problem defined by (1) and (2): he considered the case in which 
k = 1 = m and n = 2m, with B = [I 0] and C = [I 0] or [0 I], where Z is the unit 
m x m matrix. Sloan and Wilks [3] considered this even-order problem for general 
matrices B and C of dimensions m x 2m and rank m. In a recent paper Davey [4] 
has described the use of the Riccati method for system (1) when the order is even or 
odd. 
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The Riccati method of solution involves the integration of a system of nonlinear 
Riccati differential equations along the real line segment from z = 0 to z = x. fn 
the course of this integration it is usually necessary to traverse points at which the 
dependent variables become singular. It is shown in [2, 31 that in the even-order case, 
n = 2m, the singular points may be avoided by a procedure which involves the 
inversion of an m x m matrix and a switch to a new set of dependent variables. 
Denman [5] first introduced the interesting idea of using a complex contour of 
integration as a means of traversing singularities and Davey [4] used this technique 
for the solution of an odd-order problem. The contour integration method is appli- 
cable to even- or odd-order systems with k + I = n and k > I. In this note we show 
that the switching procedure which is used in [2, 31 for the even-order case with k = I 
may be extended to deal with even- or odd-order systems with k > 1. Davey illustrated 
the complex contour method by considering the evaluation of eigenvalues arising out 
of perturbations of the Blasius profile, this being a problem on a semi-infinite inter- 
val with n = 3 and k = 2. Here we consider the same illustrative problem and it is 
shown that the extended switching procedure has certain advantages over the complex 
contour method. 

2. SWITCHING PROCEDURE 

Introduce vectors U(z) and V(z) with k and I components, respectively, using the 
transformation 

U(z) = By(z), w = DYW, (3) 

where the constant I x it matrix D is chosen such that M = [“,I is nonsingular. 
System (1) may be written in terms of the n-vector Y(z) = [,“{:I] and the transformed 
system may be partitioned in the form 

Js = .d(z 0) u + qz 
dz ’ a) v 9 9 

LlrV --= 
dz qz, 0) u + wz, 0) v, 

where the matrices cd, 58, W, and 9 have dimensions k x k, k x I, 1 x k, I x I, 
respectively. After transformation, the boundary conditions (2) take the form 

U(0) = 0, (54 
q-4 + p(x) = 0, (5b) 

where [CX /3] = CM-l. The Riccati method involves the introduction of a k Y I 
matrix E(z) by means of the transformation 

U(z) = E(z) V(z). (f-9 
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If z(z) denotes the space of solutions Y(z) = [$:;I of (4) which satisfy the initial 
condition (5a), then at any station z this space will be a vector space of dimension 1. 
The use of the transformation (6) assumes that any Y(z) E z(z) may be represented 
as a linear combination of the columns of a matrix 

[ I “i-i’ V(z), (7) 

where Z is the unit I x I matrix, and the columns of the I x I matrix V(z) are linearly 
independent and they may be regarded as a basis for the solution V(z). With Y(z) 
represented by (7), U(z) and V(z) will be solutions of (4) if the k x I matrix E(z) 
satisfies the Riccati equation 

where the prime denotes d1d.z. The boundary conditions to be imposed on E(z) have 
been discussed by Sloan [6] for the case k = I and these arguments apply equally well 
to the case k # I. The initial condition (5a) is satisfied by a linear combination of the 
basis elements (7) if and only if E(0) = 0. If we consider the space L?(z) for z > 0, 
we see that the terminating condition (5b), or [LY /I] Y(x) = 0, will be satisfied at 
any point z = x where there is a vector Y(z) in L?(z) and in N([a: /3]), where N([*]) 
denotes the null space of [a]. With Y(z) represented by the basis (7) a necessary and 
sufficient condition for the existence of such a common vector is that 

det[aE(x) + fl] = 0. (9) 

For prescribed x, eigenvalues of the problem defined by Eqs. (1) and (2) are those 
values of the parameter u for which (9) is satisfied, where E(x) is obtained by 
integrating (8) over the range 0 < z < x from an initial state E(0) = 0. 

For the case k = Z, Sloan [6] has pointed out that de@?(z)] will be singular at any 
point z where z(z) and the null space of the I x n matrix [O I] have a vector Y(z) 
in common. For any integers k and I satisfying k + I = n, the columns of (7) cannot 
be used as a basis at any point z = z,, where there is a vector Y(z) E J?(z) n N([O Z]), 
with 0 and Z denoting the zero I x k and the unit I x I matrices, respectively. Near 
z = z, the structure (7) does not provide a proper representation of the solution space 
and if the integration of (8) approaches z = z, , then elements of E(z) will become 
unbounded. In terms of the original dependent variable y(z), a singularity in E(z) 
will occur at any point where there is a vector y(z) E z(z) n N(D), and it follows that 
the choice of D will affect the positions of singular points. 

If the integration of (8) approaches a singular point, remedial steps have to be taken 
and Scott [2] has explained that, in the case k = I, the singularity may be traversed 
by switching to the inverse matrix E-‘(z). Davey [4] has shown that for any k and I 
with k + I = n, singularities may be avoided by deforming the contour of integration 
into the complex plane. Here we propose an extension of the linear transformation 
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used in [3] as a means of traversing the singularity in the general case with k + I = n. 
Introduce new dependent vectors 4(z) and r~(z) through the linear transformation 

rq1 = K: :]l’r:::;l =Jr::l (10) 
where J is a constant nonsingular matrix and the submatrices c1 , Ed , Ed, and eq 
have dimensions k x k, k x I, 1 x k, and I x I, respectively. If 4(z) and Q(Z) are 
related by 

4(z) = G(z) *1(-“), (11) 

then it is readily shown that at z = Z, 

G(Z) = (cl - E(T) +(E(z) cq - c2), (12) 

provided (Q - E(Z) Q) is nonsingular. In terms of e(z) = [$:I] the given system 
(1) takes the form Cp’ = Z(z, u) 9, where 9 = J-lML(J-lM)-l. This may be par- 
titioned as in (4) and the Riccati equation in G(z), analogous to Eq. (8), is readily 
obtained. If in the course of integrating Eq. (S), a point Z is reached where some norm 
of E(z) exceeds a preset value, a switch is made to G(z) via (12) and the singular point 
is traversed using the Riccati system in G(z). If desired, a return may be made to E(z) 
beyond the singularity. If G(z) remains well behaved, the integration may be continued 
in the G(z) system as far as z = x. In terms of 4(z) and Q(Z) the terminating condition 
(5b) takes the form y+(x) + 8q(x) = 0, where y = CXQ + flcs and 6 = azg -+ /3cq . 
If J is chosen so that y # 0, the eigenvalues may be obtained using the terminating 
condition 

det[yG(x) + 61 = 0. (13) 

There is obviously a great deal of flexibility in the choice of the matrix J in trans- 
formation (10). If a transformation at z = Z is such that for z E [Z, x] the solution 
space Z(z) contains no vector e(z) = [$~] with q(z) = 0, then the G(z) system may 
be integrated from z = Z to z = x. One of the transformations described in the next 
section possesses these rather fortunate properties. 

If the inverse of matrix J in Eq. (10) is Q :I, with appropriate partitioning, then 
G(z) will have singular elements at any z where there is a vector Y(z) E Z(z) n 
N([K~ ~~1). It seems appropriate, therefore, to select the transformation in such a way 
that at z == Z any linear combination of columns of (7) be orthogonal to N([K3 ~~1). 

This may be achieved if [K~ KJ L= PIE(Z)TI], where P is any nonsingular I x 1 
matrix. Subject to this constraint, the simplest choice for J-l is now [f, I,] with K3 

and K~ as above, and transformation (12) may now be written as 

G(5) = (I + E(Z) E(T)=)-l E(z) P-l. (14) 

If required, P may be used to scale the elements of G(z). Note that the implementation 
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of (14) involves the inversion of a symmetric matrix which has eigenvalues bounded 
below by unity. If the elements of E(z) are monitored during the integration of (8) 
and Z is selected such that 11 s./12 < c at z = Z, where c is a preset constant, s is any 
column of Ed and 11 . Ii2 is the Euclidean vector norm, then each element of 
E(2) E(ZI)r will be less than c2 in modulus. This imposes the controllable limit 1 + kc2 
on the condition number of Z + E(2) E(%jT in terms of the spectral matrix norm. In 
this symmetric case the condition number is the ratio of the largest eigenvalue to the 
smallest eigenvalue. A limited condition number should prevent the introduction 
of large rounding errors during the switching operation. 

3. ILLUSTRATIVE EXAMPLE 

The differential equation associated with the Blasius velocity profile perturbation 
problem is [4] 

y” +fy” + uf’y’ + (1 - a)f”y = 0 (15) 

and the boundary conditions are 

JJ=y’=O at z=O, (16) 

y’ + 0 exponentially as z --f co, (17) 

where f is the Blasius solution. Equation (15) may be written in the format of (4) 
with U = [“,,I and V = [ y”]. From this system we obtain the components of the 
Riccati equation (8) as 

E; = E, +fEl + (1 - u)~"J%~ + uf’W2, 
(18) 

E; = 1 + fE2 + (1 - a)f"E1E2 + u~'E~~, 

where E = [::I. If Eqs. (18) are integrated from z = 0 with initial state E(0) = 0, 
then, as pointed out in [4], a singularity is encountered. Two switching procedures 
were considered each of which permitted integration to large z. 

Procedure 1 

Let 

4 = [ $1, r) = [VI, G = EZfl 
and obtain Riccati equations 

G; = G2 - G12, 

G; = -(l - u)f” - uf’G1 - fG2 - G,G2. 

(19) 

(20) 
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Transformation (12) has the simple form 

Gt.3 = WY&t% G,(T) = l/E,(Z). (21) 

With this procedure a switch was made from E(z) to G(z) at the first monitoring point 
where jj E/If exceeded unity, where E is here regarded as a two-vector, and jl * /I2 again 
denotes the Euclidean vector norm. 

Procedure 2 

The second procedure used transformation (14) with the scalar P-l set to 
(1 + II Etm/l/ Jw)llm 3 where I/ . Ijm denotes the maximum vector norm which is the 
modulus of the largest element in the vector. As in the first approach a switch was 
made at the first monitoring point z = Z where 11 E(z)& exceeded unity. If El@) = e, 
and E,(Z) = e2 , the Riccati equations in G(z) have the form 

G; = G, + (f - e2) G, + clG12 + c2GlG2, 

G;J = P-l - e,G1 - e,G, + (f - ez) G2 + c,G,G, + c,G,~, (22) 

where c1 = P[e,ez + (1 - a)f” - elf], c2 = P[e22 - e, + uf’ - e2 f 1. Transfor- 
mation (14) has the form 

With each procedure the G system remained bounded between z = Z and the point 
at which the terminating boundary condition was imposed. 

Wilks and Bramley [7] have discussed the asymptotic behavior of the solutions. 
Their boundary conditions for large z required for the isolation of exponentially 
decaying y’(z) may be written as 

ollJ(z) + PV(z) -+ 0 as z-co, (24) 

where 01 = [0 h(z)] and /3 = 1, with h(z) = (z - ql){ 1 + (1 - U)(Z - q&2} and 
q1 = 1.21676. Condition (24) enables us to obtain terminating conditions on G(Z) 
analogous to Eq. (13). For procedures 1 and 2 the conditions are, respectively, 

and 

44 G(z) + G,(z) --+ 0, (25) 

1 - PkGtz) + (e2 - h(z)) G,(z)) - 0 (26) 

as z -+ co. The aim is to integrate the G systems to a large value of z, say z = x, , 
and to obtain the eigenvalues iteratively by finding values of u for which the left- 
hand sides of (25) and (26) are zero. 
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Before discussing possible methods of obtaining initial estimates for x, it is essential 
to describe a technicality concerning the use of the above procedures. Procedure 1 
was found to behave extremely well over a wide range of eigenvalues, whereas pro- 
cedure 2 became unreliable for higher eigenvalues. In both cases the switch from the E 
system to the G sytem was performed without loss of accuracy. The source of error 
was obtained by a consideration of the nature of the elements of the matrix G(z) at 
a typical station z = x. Equation (11) indicates that 4(x) = G(x) n(x) and it follows 
that if q(x) = ei , the ith column of the unit 1 x 1 matrix, then the ith column of G(x) 
may be identified with 4(x). Hence the ith column of G(x) is equal to that 4(x) which 
is obtained by solving the given system of differential equations on the interval 
0 < z < x, with the prescribed homogeneous boundary conditions at z = 0 and 
with the inhomogeneous condition q(x) = ei at z = x. This view of the Riccati ele- 
ments is analogous to that adopted in the invariant imbedding approach as described, 
for example, in the text by Scott [l]. 

If the ideas outlined above are applied to the Riccati system in procedure 1, it 
is readily seen that at any station z = x, G,(x) = y’(x) and G,(x) = y”(x), where 
y(z) is the solution of (15) and (16) in 0 < z < x with the additional constraint 
y(x) = 1. For the eigenvalue problem under discussion y’(z) and y”(z) decrease 
exponentially as z -+ co so the G system in procedure 1 might well be described as 
the natural choice for this problem. For procedure 2 it is readily shown that G,(x) = 
y(x) and G,(x) = y’(x), where y(z) is the solution of (15) and (16) in 0 < z < x 
with the additional constraint P(e, y(x) + e, y’(x) -t y”(x)) = 1. The terms y’(x) 
and y”(x) decrease to zero as x + co and it follows that G,(z) tends to the limit 1 jPel 
as z -+ co. This particular limit was found to be the source of the error in the use 
of procedure 2 for higher eigenvalues. Roundoff errors produced by differencing 
were introduced during the evaluation of the expression P-l - e,G, on the right-hand 
side of the second equation in (22). To circumvent this difficulty G,(z) was replaced by 
F,(z) = G,(z) - l/Pe, and the integration was effected in terms of F,(z) and G,(z) 
with the terminating condition (26) replaced by 

h(z) G,(z) - e,F,(z) - e,G,(z) - 0. (27) 

The modified procedure 2 gave accurate results over a wide range of eigenvalues. 
One of the main problems in the numerical solution of a system of ordinary differen- 

tial equations defined on an infinite interval is the determination of the point x, 
at which the terminating boundary conditions are applied. This problem has been 
considered for a second-order inhomogeneous system in interesting and useful papers 
by Robertson [8] and Alspaugh [9]. Robertson used a matrix factorization method 
and Alspaugh employed invariant imbedding, the approaches being related in that 
each involves a double sweep with criteria imposed at the end of the forward sweep 
to determine x, . For the eigenvalue problem under consideration which differs 
from the inhomogeneous problem in that it necessarily involves an iteration with 
respect to the eigenparameter 0, an initial estimate of x, was obtained from an 
examination of the behavior of the Riccati elements as z was increased. 

The element G,(z) defined in procedure 1 oscillates with respect to z as z increases. 
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If u = ui-, where oi denotes the ith positive eigenvalue and ui- denotes a value slightly 
less than ui , the element has i - 1 zeros and G2(z) + 0 from above or below as 
z -+ cc according to whether i is even or odd. If u = oi+ the element G,(z) has i 
zeros and the location of the ith zero tends to co as u ---f (TV from above, whereas 
the locations of the first i - 1 zeros are insensitive to changes in u for u near u< . 
When using procedure 1 for the evaluation of oi an approximation to ui was selected 
and the integration was carried out to a point x, beyond the (i - 1)th zero of G,(z). 
The eigenvalue for the problem defined over this finite interval was obtained iteratively 
and the whole process was repeated for progressively increasing x, until further increase 
had no effect on the computed value of u. For u = ai- the element G,(z) in the modi- 
fied procedure 2 has i - 3 zeros for i > 3 and i - 1 zeros for i < 3. In all cases 
G,(z) + 0 from above or below as z --f co according to whether i is odd or even. 
G,(z) has an additional zero if u is increased to ci+ and the location of this zero 
tends to infinity as D --f ui from above. When using this procedure the initial estimate 
of x, was made so that the finite interval [O, x,] contained the first set of zeros 
of G,(z) and the iteration was then performed as described above. 

4. RESULTS AND COMMENTS 

Several eigenvalues were obtained using procedure 1 and the modified procedure 2 
as described above and the results agreed with those given in [7]. For example, the 
values 2.0000, 5.6287, and 19.0397 were obtained for or , uQ , and u10 with final x, 
values of 6.0, 7.5, and 14, respectively. At u = ui the approximate locations of the 
highest zeros of G2(z) as defined in procedure 1 are 4.2 and 8.6 for i = 3 and 10, 
respectively. For G2(z) as defined in procedure 2 the highest zeros for i = 3 and 10 
have approximate locations 3.7 and 8.4, respectively. The equations were integrated 
using a standard fourth-order variable step Runge-Kutta procedure with stepsize 
control based on local error. Computations were performed on an ICL 1904s 
computer using single length arithmetic. The switching methods described in Section 3 
proved to be effective in traversing the singularity in this odd-order Riccati for- 
mulation. It was suggested in the discussion at the end of Section 3 that procedure 1 
might be described as the natural formulation for this problem: this remark derived 
from a consideration of the domain of the problem and not from difficulties 
encountered at the switching stage. The Riccati formulation is not unique and any 
relevant information which is available about a particular problem might well be 
utilized in selecting a Riccati formulation. 

The eigenvalues u1 , u3 , and u10 were also obtained by integrating over the complex 
contour 2 = t - O.O2it(x, - t), 0 < t < x, , as described by Davey [4]. In this 
complex formulation the number of real differential equations is doubled and one 
might expect a consequent decrease in efficiency. The computer time used by the 
complex contour method was found to be greater than that used by the methods 
described in Section 3 by a factor which was approximately 3 for the eigenvalue u1 
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and 4 for the eigenvalue u3. Convergence difficulties were encountered with the 
contour method for the eigenvalue ul,, . 

One technical advantage of the switching method over the contour method is that 
with the former the eigenfunction is readily computed. The method described by 
Sloan [6] applies to the case of uneven boundary conditions if the switching techniques 
of Section 3 are employed. The eigenfunction ui(z) associated with eigenvalue ui , 
i = 1, 3, lo-normalized so that y”(O) = l-was computed using this method. 
The eigenfunctions, which are plotted in Fig. 1, show that u,(z) has no zero in z > 0 

30- 

25- 

20- 

Yi(Z) 

15- 

IO- 

05- 

Y,(Z) 

FIG. 1. Blasius eigenfunction y,(z) (i = I, 3, 10) normalized so that y”(0) = 1. 

so that for switching procedure I, q(z) # 0 for z > I and no G singularities are 
encountered. In procedure 2, T(Z) = P(e, y(z) + e2 v’(z) + y”(z)) and this is 
dominated by the first term which has no zeros in z > Z. 

The switching method described appears to have advantages over the contour 
integration method, both in terms of computing time and in its ability to recover the 
eigenfunction. 
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