Note on the Riccati Method for Differential Eigenvalue Problems of Odd Order

D. M. SLOAN AND J. S. BRAMLEY

Department of Mathematics, University of Strathclyde, Glasgow, Scotland

A technique is described for traversing singular points during the numerical evaluation of eigenvalues of a system of linear ordinary differential equations using the Riccati method. The technique may be applied to a system of even or odd order and with any distribution of linear homogeneous boundary conditions. Comparison is made with a method which uses a complex contour of integration to avoid the singularities.

1. INTRODUCTION

This note is concerned with the Riccati transformation method for the computation of eigenvalues of a system of linear ordinary differential equations of the form

$$\frac{d\mathbf{y}}{dz} = L(z,\sigma) \, \mathbf{y} \tag{1}$$

subject to the linear separated boundary conditions

$$B\mathbf{y}(0) = \mathbf{0},\tag{2a}$$

$$C\mathbf{y}(\mathbf{x}) = \mathbf{0}.\tag{2b}$$

Here y is a real *n*-vector and L is an $n \times n$ matrix which depends on the independent variable z and on some scalar eigenparameter σ . The real matrices B and C have full rank and their dimensions are $k \times n$ and $l \times n$, respectively, where k + l = n and $k \ge l$. If (1) is solved by a traditional shooting method which operates by generating a basis of the solution space, then difficulties are encountered if the real parts of the eigenvalues of L are widely separated. Steps have to be taken to overcome the effects of growth in the basis components. The Riccati method overcomes some of these growth problems. Scott [1, 2] first described the use of the Riccati method for the problem defined by (1) and (2): he considered the case in which k = l = m and n = 2m, with $B = [I \ 0]$ and $C = [I \ 0]$ or $[0 \ I]$, where I is the unit $m \times m$ matrix. Sloan and Wilks [3] considered this even-order problem for general matrices B and C of dimensions $m \times 2m$ and rank m. In a recent paper Davey [4] has described the use of the Riccati method for system (1) when the order is even or odd.

EIGENVALUE PROBLEMS

The Riccati method of solution involves the integration of a system of nonlinear Riccati differential equations along the real line segment from z = 0 to z = x. In the course of this integration it is usually necessary to traverse points at which the dependent variables become singular. It is shown in [2, 3] that in the even-order case, n = 2m, the singular points may be avoided by a procedure which involves the inversion of an $m \times m$ matrix and a switch to a new set of dependent variables. Denman [5] first introduced the interesting idea of using a complex contour of integration as a means of traversing singularities and Davey [4] used this technique for the solution of an odd-order problem. The contour integration method is applicable to even- or odd-order systems with k + l = n and $k \ge l$. In this note we show that the switching procedure which is used in [2, 3] for the even-order case with k = lmay be extended to deal with even- or odd-order systems with $k \ge l$. Davey illustrated the complex contour method by considering the evaluation of eigenvalues arising out of perturbations of the Blasius profile, this being a problem on a semi-infinite interval with n = 3 and k = 2. Here we consider the same illustrative problem and it is shown that the extended switching procedure has certain advantages over the complex contour method.

2. Switching Procedure

Introduce vectors U(z) and V(z) with k and l components, respectively, using the transformation

$$\mathbf{U}(z) = B\mathbf{y}(z), \qquad \mathbf{V}(z) = D\mathbf{y}(z), \tag{3}$$

where the constant $l \times n$ matrix D is chosen such that $M = \begin{bmatrix} B \\ D \end{bmatrix}$ is nonsingular. System (1) may be written in terms of the *n*-vector $\mathbf{Y}(z) = \begin{bmatrix} \mathbf{U}(z) \\ \mathbf{V}(z) \end{bmatrix}$ and the transformed system may be partitioned in the form

$$\frac{d\mathbf{U}}{dz} = \mathscr{A}(z, \sigma) \mathbf{U} + \mathscr{B}(z, \sigma) \mathbf{V},$$

$$-\frac{d\mathbf{V}}{dz} = \mathscr{C}(z, \sigma) \mathbf{U} + \mathscr{D}(z, \sigma) \mathbf{V},$$
(4)

where the matrices \mathscr{A} , \mathscr{B} , \mathscr{C} , and \mathscr{D} have dimensions $k \times k$, $k \times l$, $l \times k$, $l \times l$, respectively. After transformation, the boundary conditions (2) take the form

$$\mathbf{U}(\mathbf{0}) = \mathbf{0},\tag{5a}$$

$$\alpha \mathbf{U}(x) + \beta \mathbf{V}(x) = \mathbf{0},\tag{5b}$$

where $[\alpha \beta] = CM^{-1}$. The Riccati method involves the introduction of a $k \times l$ matrix E(z) by means of the transformation

$$\mathbf{U}(z) = E(z) \, \mathbf{V}(z). \tag{6}$$

If $\Sigma(z)$ denotes the space of solutions $\mathbf{Y}(z) = \begin{bmatrix} \mathbf{U}(z) \\ \mathbf{Y}(z) \end{bmatrix}$ of (4) which satisfy the initial condition (5a), then at any station z this space will be a vector space of dimension *l*. The use of the transformation (6) assumes that any $\mathbf{Y}(z) \in \Sigma(z)$ may be represented as a linear combination of the columns of a matrix

$$\begin{bmatrix} E(z)\\I \end{bmatrix} V(z),\tag{7}$$

where *I* is the unit $l \times l$ matrix, and the columns of the $l \times l$ matrix V(z) are linearly independent and they may be regarded as a basis for the solution V(z). With Y(z) represented by (7), U(z) and V(z) will be solutions of (4) if the $k \times l$ matrix E(z) satisfies the Riccati equation

$$E' = \mathscr{B} + \mathscr{A}E + E\mathscr{D} + E\mathscr{C}E, \tag{8}$$

where the prime denotes d/dz. The boundary conditions to be imposed on E(z) have been discussed by Sloan [6] for the case k = l and these arguments apply equally well to the case $k \neq l$. The initial condition (5a) is satisfied by a linear combination of the basis elements (7) if and only if E(0) = 0. If we consider the space $\Sigma(z)$ for z > 0, we see that the terminating condition (5b), or $[\alpha \beta] \mathbf{Y}(x) = \mathbf{0}$, will be satisfied at any point z = x where there is a vector $\mathbf{Y}(z)$ in $\Sigma(z)$ and in $N([\alpha \beta])$, where $N([\cdot])$ denotes the null space of $[\cdot]$. With $\mathbf{Y}(z)$ represented by the basis (7) a necessary and sufficient condition for the existence of such a common vector is that

$$\det[\alpha E(x) + \beta] = 0. \tag{9}$$

For prescribed x, eigenvalues of the problem defined by Eqs. (1) and (2) are those values of the parameter σ for which (9) is satisfied, where E(x) is obtained by integrating (8) over the range $0 \le z \le x$ from an initial state E(0) = 0.

For the case k - l, Sloan [6] has pointed out that det[E(z)] will be singular at any point z where $\Sigma(z)$ and the null space of the $l \times n$ matrix [0 I] have a vector $\mathbf{Y}(z)$ in common. For any integers k and l satisfying k + l = n, the columns of (7) cannot be used as a basis at any point $z = z_0$ where there is a vector $\mathbf{Y}(z) \in \Sigma(z) \cap N([0 \ I])$, with 0 and I denoting the zero $l \times k$ and the unit $l \times l$ matrices, respectively. Near $z = z_0$ the structure (7) does not provide a proper representation of the solution space and if the integration of (8) approaches $z = z_0$, then elements of E(z) will become unbounded. In terms of the original dependent variable $\mathbf{y}(z)$, a singularity in E(z)will occur at any point where there is a vector $\mathbf{y}(z) \in \Sigma(z) \cap N(D)$, and it follows that the choice of D will affect the positions of singular points.

If the integration of (8) approaches a singular point, remedial steps have to be taken and Scott [2] has explained that, in the case k = l, the singularity may be traversed by switching to the inverse matrix $E^{-1}(z)$. Davey [4] has shown that for any k and l with k + l = n, singularities may be avoided by deforming the contour of integration into the complex plane. Here we propose an extension of the linear transformation used in [3] as a means of traversing the singularity in the general case with k + l = n. Introduce new dependent vectors $\phi(z)$ and $\eta(z)$ through the linear transformation

$$\begin{bmatrix} \mathbf{U}(z) \\ \mathbf{V}(z) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\epsilon}_1 & \boldsymbol{\epsilon}_2 \\ \boldsymbol{\epsilon}_3 & \boldsymbol{\epsilon}_4 \end{bmatrix} \begin{bmatrix} \boldsymbol{\phi}(z) \\ \boldsymbol{\eta}(z) \end{bmatrix} = J \begin{bmatrix} \boldsymbol{\phi}(z) \\ \boldsymbol{\eta}(z) \end{bmatrix}$$
(10)

where J is a constant nonsingular matrix and the submatrices ϵ_1 , ϵ_2 , ϵ_3 , and ϵ_4 have dimensions $k \times k$, $k \times l$, $l \times k$, and $l \times l$, respectively. If $\phi(z)$ and $\eta(z)$ are related by

$$\boldsymbol{\phi}(z) = \boldsymbol{G}(z) \, \boldsymbol{\eta}(z), \tag{11}$$

then it is readily shown that at $z = \overline{z}$,

$$G(\bar{z}) = (\epsilon_1 - E(\bar{z}) \epsilon_3)^{-1} (E(\bar{z}) \epsilon_4 - \epsilon_2), \qquad (12)$$

provided $(\epsilon_1 - E(\bar{z}) \epsilon_3)$ is nonsingular. In terms of $\Phi(z) = [\frac{\Phi(z)}{\eta(z)}]$ the given system (1) takes the form $\Phi' = \mathscr{L}(z, \sigma) \Phi$, where $\mathscr{L} = J^{-1}ML(J^{-1}M)^{-1}$. This may be partitioned as in (4) and the Riccati equation in G(z), analogous to Eq. (8), is readily obtained. If in the course of integrating Eq. (8), a point \bar{z} is reached where some norm of E(z) exceeds a preset value, a switch is made to G(z) via (12) and the singular point is traversed using the Riccati system in G(z). If desired, a return may be made to E(z)beyond the singularity. If G(z) remains well behaved, the integration may be continued in the G(z) system as far as z = x. In terms of $\phi(z)$ and $\eta(z)$ the terminating condition (5b) takes the form $\gamma \phi(x) + \delta \eta(x) = 0$, where $\gamma = \alpha \epsilon_1 + \beta \epsilon_3$ and $\delta = \alpha \epsilon_2 + \beta \epsilon_4$. If J is chosen so that $\gamma \neq 0$, the eigenvalues may be obtained using the terminating condition

$$\det[\gamma G(x) + \delta] = 0. \tag{13}$$

There is obviously a great deal of flexibility in the choice of the matrix J in transformation (10). If a transformation at $z = \overline{z}$ is such that for $z \in [\overline{z}, x]$ the solution space $\Sigma(z)$ contains no vector $\Phi(z) = \begin{bmatrix} \phi(z) \\ \eta(z) \end{bmatrix}$ with $\eta(z) = 0$, then the G(z) system may be integrated from $z = \overline{z}$ to z = x. One of the transformations described in the next section possesses these rather fortunate properties.

If the inverse of matrix J in Eq. (10) is $\begin{bmatrix} \kappa_1 & \kappa_2 \\ \kappa_3 & \kappa_4 \end{bmatrix}$, with appropriate partitioning, then G(z) will have singular elements at any z where there is a vector $\mathbf{Y}(z) \in \Sigma(z) \cap N([\kappa_3 & \kappa_4])$. It seems appropriate, therefore, to select the transformation in such a way that at $z = \overline{z}$ any linear combination of columns of (7) be orthogonal to $N([\kappa_3 & \kappa_4])$. This may be achieved if $[\kappa_3 & \kappa_4] = P[E(\overline{z})^T I]$, where P is any nonsingular $l \times l$ matrix. Subject to this constraint, the simplest choice for J^{-1} is now $\begin{bmatrix} l & 0 \\ \kappa_3 & \kappa_4 \end{bmatrix}$ with κ_3 and κ_4 as above, and transformation (12) may now be written as

$$G(\bar{z}) = (I + E(\bar{z}) E(\bar{z})^T)^{-1} E(\bar{z}) P^{-1}.$$
(14)

If required, P may be used to scale the elements of $G(\bar{z})$. Note that the implementation

of (14) involves the inversion of a symmetric matrix which has eigenvalues bounded below by unity. If the elements of E(z) are monitored during the integration of (8) and \bar{z} is selected such that $||\mathbf{s}||_2 < c$ at $z = \bar{z}$, where c is a preset constant, s is any column of $E(z)^T$ and $||\cdot||_2$ is the Euclidean vector norm, then each element of $E(\bar{z}) E(\bar{z})^T$ will be less than c^2 in modulus. This imposes the controllable limit $1 + kc^2$ on the condition number of $I + E(\bar{z}) E(\bar{z})^T$ in terms of the spectral matrix norm. In this symmetric case the condition number is the ratio of the largest eigenvalue to the smallest eigenvalue. A limited condition number should prevent the introduction of large rounding errors during the switching operation.

3. Illustrative Example

The differential equation associated with the Blasius velocity profile perturbation problem is [4]

$$y''' + fy'' + \sigma f'y' + (1 - \sigma)f''y = 0$$
(15)

and the boundary conditions are

$$y = y' = 0$$
 at $z = 0$, (16)

$$y' \to 0$$
 exponentially as $z \to \infty$, (17)

where f is the Blasius solution. Equation (15) may be written in the format of (4) with $\mathbf{U} = \begin{bmatrix} y \\ y \end{bmatrix}$ and $\mathbf{V} = \begin{bmatrix} y'' \end{bmatrix}$. From this system we obtain the components of the Riccati equation (8) as

$$E'_{1} = E_{2} + fE_{1} + (1 - \sigma)f''E_{1}^{2} + \sigma f'E_{1}E_{2},$$

$$E'_{2} = 1 + fE_{2} + (1 - \sigma)f''E_{1}E_{2} + \sigma f'E_{2}^{2},$$
(18)

where $E = \begin{bmatrix} E_1 \\ E_2 \end{bmatrix}$. If Eqs. (18) are integrated from z = 0 with initial state E(0) = 0, then, as pointed out in [4], a singularity is encountered. Two switching procedures were considered each of which permitted integration to large z.

Procedure 1

Let

$$\boldsymbol{\phi} = \begin{bmatrix} y'\\ y'' \end{bmatrix}, \quad \boldsymbol{\eta} = [y], \quad \boldsymbol{G} = \begin{bmatrix} G_1\\ G_2 \end{bmatrix}$$
(19)

and obtain Riccati equations

$$G'_{1} = G_{2} - G_{1}^{2},$$

$$G'_{2} = -(1 - \sigma)f'' - \sigma f'G_{1} - fG_{2} - G_{1}G_{2}.$$
(20)

Transformation (12) has the simple form

$$G_1(\bar{z}) = E_2(\bar{z})/E_1(\bar{z}), \qquad G_2(\bar{z}) = 1/E_1(\bar{z}).$$
 (21)

With this procedure a switch was made from E(z) to G(z) at the first monitoring point where $|| E ||_2$ exceeded unity, where E is here regarded as a two-vector, and $|| \cdot ||_2$ again denotes the Euclidean vector norm.

Procedure 2

The second procedure used transformation (14) with the scalar P^{-1} set to $(1 + || E(\bar{z})||_2^2)/|| E(\bar{z})||_{\infty}$, where $|| \cdot ||_{\infty}$ denotes the maximum vector norm which is the modulus of the largest element in the vector. As in the first approach a switch was made at the first monitoring point $z = \bar{z}$ where $|| E(z)||_2$ exceeded unity. If $E_1(\bar{z}) = e_1$ and $E_2(\bar{z}) = e_2$, the Riccati equations in G(z) have the form

$$G'_{1} = G_{2} + (f - e_{2}) G_{1} + c_{1}G_{1}^{2} + c_{2}G_{1}G_{2},$$

$$G'_{2} = P^{-1} - e_{1}G_{1} - e_{2}G_{2} + (f - e_{2}) G_{2} + c_{1}G_{1}G_{2} + c_{2}G_{2}^{2},$$
(22)

where $c_1 = P[e_1e_2 + (1 - \sigma)f'' - e_1f]$, $c_2 = P[e_2^2 - e_1 + \sigma f' - e_2f]$. Transformation (14) has the form

$$G_1(\bar{z}) = E_1(\bar{z})/||E(\bar{z})||_{\infty}, \qquad G_2(\bar{z}) = E_2(\bar{z})/||E(\bar{z})||_{\infty}.$$
(23)

With each procedure the G system remained bounded between $z = \overline{z}$ and the point at which the terminating boundary condition was imposed.

Wilks and Bramley [7] have discussed the asymptotic behavior of the solutions. Their boundary conditions for large z required for the isolation of exponentially decaying y'(z) may be written as

$$\alpha \mathbf{U}(z) + \beta \mathbf{V}(z) \rightarrow \mathbf{0} \quad \text{as} \quad z \rightarrow \infty,$$
 (24)

where $\alpha = [0 \ h(z)]$ and $\beta = 1$, with $h(z) = (z - q_1)\{1 + (1 - \sigma)(z - q_1)^{-2}\}$ and $q_1 = 1.21676$. Condition (24) enables us to obtain terminating conditions on G(z) analogous to Eq. (13). For procedures 1 and 2 the conditions are, respectively,

$$h(z) G_1(z) + G_2(z) \to 0,$$
 (25)

and

$$1 - P\{e_1G_1(z) + (e_2 - h(z)) \; G_2(z)\} \to 0$$
(26)

as $z \to \infty$. The aim is to integrate the G systems to a large value of z, say $z = x_{\infty}$, and to obtain the eigenvalues iteratively by finding values of σ for which the left-hand sides of (25) and (26) are zero.

Before discussing possible methods of obtaining initial estimates for x_{∞} it is essential to describe a technicality concerning the use of the above procedures. Procedure 1 was found to behave extremely well over a wide range of eigenvalues, whereas procedure 2 became unreliable for higher eigenvalues. In both cases the switch from the *E* system to the *G* sytem was performed without loss of accuracy. The source of error was obtained by a consideration of the nature of the elements of the matrix G(z) at a typical station z = x. Equation (11) indicates that $\phi(x) = G(x) \eta(x)$ and it follows that if $\eta(x) = \mathbf{e}_i$, the *i*th column of the unit $l \times l$ matrix, then the *i*th column of G(x)may be identified with $\phi(x)$. Hence the *i*th column of G(x) is equal to that $\phi(x)$ which is obtained by solving the given system of differential equations on the interval $0 \leq z \leq x$, with the prescribed homogeneous boundary conditions at z = 0 and with the inhomogeneous condition $\eta(x) = \mathbf{e}_i$ at z = x. This view of the Riccati elements is analogous to that adopted in the invariant imbedding approach as described, for example, in the text by Scott [1].

If the ideas outlined above are applied to the Riccati system in procedure 1, it is readily seen that at any station z = x, $G_1(x) = y'(x)$ and $G_2(x) = y''(x)$, where y(z) is the solution of (15) and (16) in $0 \le z \le x$ with the additional constraint y(x) = 1. For the eigenvalue problem under discussion y'(z) and y''(z) decrease exponentially as $z \to \infty$ so the G system in procedure 1 might well be described as the natural choice for this problem. For procedure 2 it is readily shown that $G_1(x) =$ y(x) and $G_2(x) = y'(x)$, where y(z) is the solution of (15) and (16) in $0 \le z \le x$ with the additional constraint $P(e_1 y(x) + e_2 y'(x) + y''(x)) = 1$. The terms y'(x)and y''(x) decrease to zero as $x \to \infty$ and it follows that $G_1(z)$ tends to the limit $1/Pe_1$ as $z \to \infty$. This particular limit was found to be the source of the error in the use of procedure 2 for higher eigenvalues. Roundoff errors produced by differencing were introduced during the evaluation of the expression $P^{-1} - e_1G_1$ on the right-hand side of the second equation in (22). To circumvent this difficulty $G_1(z)$ was replaced by $F_1(z) = G_1(z) - 1/Pe_1$ and the integration was effected in terms of $F_1(z)$ and $G_2(z)$ with the terminating condition (26) replaced by

$$h(z) G_2(z) - e_1 F_1(z) - e_2 G_2(z) \to 0.$$
⁽²⁷⁾

The modified procedure 2 gave accurate results over a wide range of eigenvalues.

One of the main problems in the numerical solution of a system of ordinary differential equations defined on an infinite interval is the determination of the point x_{∞} at which the terminating boundary conditions are applied. This problem has been considered for a second-order inhomogeneous system in interesting and useful papers by Robertson [8] and Alspaugh [9]. Robertson used a matrix factorization method and Alspaugh employed invariant imbedding, the approaches being related in that each involves a double sweep with criteria imposed at the end of the forward sweep to determine x_{∞} . For the eigenvalue problem under consideration which differs from the inhomogeneous problem in that it necessarily involves an iteration with respect to the eigenparameter σ , an initial estimate of x_{∞} was obtained from an examination of the behavior of the Riccati elements as z was increased.

The element $G_2(z)$ defined in procedure 1 oscillates with respect to z as z increases.

If $\sigma = \sigma_i^-$, where σ_i denotes the *i*th positive eigenvalue and σ_i^- denotes a value slightly less than σ_i , the element has i-1 zeros and $G_2(z) \rightarrow 0$ from above or below as $z \to \infty$ according to whether *i* is even or odd. If $\sigma = \sigma_i^+$ the element $G_2(z)$ has *i* zeros and the location of the *i*th zero tends to ∞ as $\sigma \rightarrow \sigma_i$ from above, whereas the locations of the first i - 1 zeros are insensitive to changes in σ for σ near σ_i . When using procedure 1 for the evaluation of σ_i an approximation to σ_i was selected and the integration was carried out to a point x_{∞} beyond the (i - 1)th zero of $G_2(z)$. The eigenvalue for the problem defined over this finite interval was obtained iteratively and the whole process was repeated for progressively increasing x_{∞} until further increase had no effect on the computed value of σ . For $\sigma = \sigma_i^-$ the element $G_2(z)$ in the modified procedure 2 has i - 3 zeros for i > 3 and i - 1 zeros for $i \leq 3$. In all cases $G_{z}(z) \rightarrow 0$ from above or below as $z \rightarrow \infty$ according to whether *i* is odd or even. $G_2(z)$ has an additional zero if σ is increased to σ_i^+ and the location of this zero tends to infinity as $\sigma \rightarrow \sigma_i$ from above. When using this procedure the initial estimate of x_{∞} was made so that the finite interval $[0, x_{\infty}]$ contained the first set of zeros of $G_2(z)$ and the iteration was then performed as described above.

4. RESULTS AND COMMENTS

Several eigenvalues were obtained using procedure 1 and the modified procedure 2 as described above and the results agreed with those given in [7]. For example, the values 2.0000, 5.6287, and 19.0397 were obtained for σ_1 , σ_3 , and σ_{10} with final x_{∞} values of 6.0, 7.5, and 14, respectively. At $\sigma = \sigma_i$ the approximate locations of the highest zeros of $G_2(z)$ as defined in procedure 1 are 4.2 and 8.6 for i = 3 and 10, respectively. For $G_2(z)$ as defined in procedure 2 the highest zeros for i = 3 and 10 have approximate locations 3.7 and 8.4, respectively. The equations were integrated using a standard fourth-order variable step Runge-Kutta procedure with stepsize control based on local error. Computations were performed on an ICL 1904S computer using single length arithmetic. The switching methods described in Section 3 proved to be effective in traversing the singularity in this odd-order Riccati formulation. It was suggested in the discussion at the end of Section 3 that procedure 1 might be described as the natural formulation for this problem: this remark derived from a consideration of the domain of the problem and not from difficulties encountered at the switching stage. The Riccati formulation is not unique and any relevant information which is available about a particular problem might well be utilized in selecting a Riccati formulation.

The eigenvalues σ_1 , σ_3 , and σ_{10} were also obtained by integrating over the complex contour $z = t - 0.02it(x_{\infty} - t)$, $0 \le t \le x_{\infty}$, as described by Davey [4]. In this complex formulation the number of real differential equations is doubled and one might expect a consequent decrease in efficiency. The computer time used by the complex contour method was found to be greater than that used by the methods described in Section 3 by a factor which was approximately 3 for the eigenvalue σ_1

and 4 for the eigenvalue σ_3 . Convergence difficulties were encountered with the contour method for the eigenvalue σ_{10} .

One technical advantage of the switching method over the contour method is that with the former the eigenfunction is readily computed. The method described by Sloan [6] applies to the case of uneven boundary conditions if the switching techniques of Section 3 are employed. The eigenfunction $y_i(z)$ associated with eigenvalue σ_i , i = 1, 3, 10—normalized so that y''(0) = 1—was computed using this method. The eigenfunctions, which are plotted in Fig. 1, show that $y_i(z)$ has no zero in z > 0

FIG. 1. Blasius eigenfunction $y_i(z)$ (i = 1, 3, 10) normalized so that y''(0) = 1.

so that for switching procedure 1, $\eta(z) \neq 0$ for $z \ge \overline{z}$ and no G singularities are encountered. In procedure 2, $\eta(z) = P(e_1 y(z) + e_2 y'(z) + y''(z))$ and this is dominated by the first term which has no zeros in $z \ge \overline{z}$.

The switching method described appears to have advantages over the contour integration method, both in terms of computing time and in its ability to recover the eigenfunction.

REFERENCES

- 1. M. R. SCOTT, "Invariant Imbedding and its Applications to Ordinary Differential Equations," Addison-Wesley, Reading, Mass., 1973.
- 2. M. R. SCOTT, J. Computational Phys. 12 (1973), 334.

- 3. D. M. SLOAN AND G. WILKS, J. Inst. Math. Appl. 18 (1976), 117.
- 4. A. DAVEY, J. Computational Phys. 24 (1977), 331.
- 5. E. D. DENMAN, "Coupled Modes in Plasmas, Elastic Media and Parametric Amplifiers," Elsevier, Amsterdam, 1970.
- 6. D. M. SLOAN, J. Computational Phys. 24 (1977), 320.
- 7. G. WILKS AND J. S. BRAMLEY, J. Computational Phys. 24 (1977), 303.
- 8. T. N. ROBERTSON, Math. Comp. 25 (1971), 475.
- 9. D. W. ALSPAUGH, Math. Comp. 28 (1974), 1005.